heureka

avatar
यूजर का नामheureka
स्कोर26367
Membership
Stats
सवाल 17
जवाब 5678

 #2
avatar+26367 
+7

Suppose that ABCD is a trapezoid in which AD||BC. 

Given AC is perpendicular to CD, AC bisects angle BAD, 

and the area of ABCD is 42, 

then compute the area of triangle ACD.

 

\(\text{Let $AB=a$ } \\ \text{Let $\angle BAC = \angle CAD = \alpha$ } \)

\(\text{Let $\angle ACB = \angle BAC = \alpha \qquad ( AD\parallel BC) $ } \)

 

sin - rule

\(\begin{array}{|rcll|} \hline \dfrac{ \sin(\angle BAC) } {BC} &=& \dfrac{ \sin(\angle ACB) } {AB} \\ \dfrac{ \sin(\alpha) } {BC} &=& \dfrac{ \sin(\alpha) } {AB} \\ BC &=& AB \quad & | \quad AB=a \\ & \boxed{BC = a} \\ \hline \end{array} \)

 

\(\text{Let $\angle ABC = 180^{\circ}-2\alpha $}\)

cos - rule

\(\begin{array}{|rcll|} \hline (AC)^2 &=& (BC)^2+(AB)^2-2\cdot BC \cdot AB \cdot \cos(180^{\circ}-2\alpha) \\ (AC)^2 &=& 2a^2+2a^2\cos( 2\alpha) \\ (AC)^2 &=& 2a^2(1+\cos(2\alpha)) \quad | \quad \cos( 2\alpha)=2\cos^2(\alpha)-1 \\ (AC)^2 &=& 2a^2\cdot ( 1+2\cos^2(\alpha)-1 ) \\ (AC)^2 &=& 2a^2\cdot 2\cos^2(\alpha) \\ (AC)^2 &=& 4a^2\cdot \cos^2(\alpha) \\ & & \boxed{ AC= 2a\cos(\alpha)} \quad | \quad \cos( \alpha)= \dfrac{AC}{AD} \\ AC &=& 2a\dfrac{AC}{AD} \\ 1 &=& \dfrac{2a}{AD} \\ & & \boxed{ AD= 2a } \\ \hline \end{array}\)

 

\(\mathbf{A_{\triangle} = \ ?} \)

\(\begin{array}{|rcll|} \hline A_{ABCD} &=& \left( \dfrac{AD+BC}{2} \right) \cdot h \quad | \quad AD= 2a,\quad BC = a \\ A_{ABCD} &=& \left( \dfrac{2a+a}{2} \right) \cdot h \\ A_{ABCD} &=& \dfrac{3}{2} a \cdot h \quad | \quad A_{ABCD}=42 \\ 42&=& \dfrac{3}{2} a \cdot h \\ a \cdot h &=& \mathbf{ \dfrac{2}{3} \cdot 42 } \\ \mathbf{a \cdot h} &\mathbf{=}& \mathbf{ 28 } \\\\ A_{\triangle} &=& \dfrac{AD\cdot h}{2} \quad | \quad AD= 2a \\ A_{\triangle} &=& \dfrac{2a\cdot h}{2} \\ A_{\triangle} &=& a\cdot h \quad | \quad a\cdot h = 28 \\ \mathbf{A_{\triangle}} &\mathbf{=}& \mathbf{ 28} \\ \hline \end{array}\)

 

The area of triangle ACD is 28.

 

laugh

15 Jan 2019
 #4
avatar+26367 
+8

Limits
I was just reviewing my calc book when I stumbled across this problem.

\(\large { \lim \limits_{x \to \infty} \dfrac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5} }\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ \lim \limits_{x \to \infty} \dfrac{\sqrt{x^4-10x}-\sqrt{x^4-5x^2+7}}{5} } \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \sqrt{x^4-10x}-\sqrt{x^4-5x^2+7} \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \sqrt{x^4-10x}-\sqrt{x^4-5x^2+7} \right) \dfrac{\left( \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} \right)}{\left( \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} \right)} \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ x^4-10x-(x^4-5x^2+7)} { \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} } \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ 5x^2-10x-7} { \sqrt{x^4-10x}+\sqrt{x^4-5x^2+7} } \right) \cdot \dfrac{x^2}{x^2} \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ \frac{5x^2-10x-7} {x^2} } { \frac{\sqrt{x^4-10x}+\sqrt{x^4-5x^2+7}} {x^2} } \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ \frac{5x^2-10x-7} {x^2} } { \sqrt{\frac{x^4-10x} {x^4} }+\sqrt{ \frac{x^4-5x^2+7} {x^4} } } \right) \\\\ &=&\dfrac15 \cdot \lim \limits_{x \to \infty} \left( \dfrac{ 5-\frac{10}{x}-\frac{7}{x^2} } { \sqrt{1-\frac{10}{x^3} } + \sqrt{1-\frac{5}{x^2}+\frac{7}{x^4}} } \right) \\\\ &=&\dfrac15 \cdot \left( \dfrac{ 5-0-0 } { \sqrt{1-0 } + \sqrt{1-0+0} } \right) \\\\ &=&\dfrac15 \cdot \left( \dfrac{ 5 } { 1 + 1 } \right) \\\\ &=&\dfrac15 \cdot \dfrac{ 5 } {2 } \\\\ &\mathbf{=}&\mathbf{\dfrac12} \\ \hline \end{array}\)

 

 

laugh

20 Des 2018
 #6
avatar+26367 
+8

c.)

hab ich ja gesagt dass der Pfeil etwas schräg ist hier ein Bild damit es etwas deutlicher wird.

Ändert sich das Ergebnis der Aufgabe bezüglich des Pfeiles ?


\(\displaystyle \lim \limits_{x\searrow 0} \dfrac{\ln\Big(\cos(x) \Big)} {\ln\Big(\cos(3x)\Big) } \qquad \text{von rechts annähern}\)

 

\(\begin{array}{|rcll|} \hline x &=& 0+\dfrac{1}{n} \\ &=& \dfrac{1}{n} \\ \hline \end{array}\)

 

\(\displaystyle \lim \limits_{n\to \infty} \dfrac{\ln\Big(\cos(\frac{1}{n}) \Big)} {\ln\Big(\cos(\frac{3}{n})\Big) }\)

 

Bernoulli / de l'Hospital

\(\begin{array}{|rcl|} \hline && \mathbf{\lim \limits_{n\to \infty} \dfrac{\ln\Big(\cos(\frac{1}{n}) \Big)} {\ln\Big(\cos(\frac{3}{n})\Big) } } \quad | \quad \text{Bernoulli / de l'Hospital } \\\\ &=& \lim \limits_{n\to \infty} \dfrac{\dfrac{-\sin(\frac{1}{n})}{\cos(\frac{1}{n})}} {\dfrac{-3\sin(\frac{3}{n})}{\cos(\frac{3}{n})} } \\\\ &=& \lim \limits_{n\to \infty} \dfrac{1}{3}\cdot \dfrac{\sin(\frac{1}{n})\cos(\frac{3}{n})} {\cos(\frac{1}{n})\sin(\frac{3}{n})} \\\\ && \begin{array}{|rcl|} \hline \sin(\frac{1}{n})\cos(\frac{3}{n}) &=& \dfrac12\cdot \Big( \sin(\frac{1}{n}-3\cdot \frac{1}{n})+ \sin(\frac{1}{n}+3\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot \Big( \sin(-2\cdot \frac{1}{n})+ \sin(4\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot \Big( \sin(4\cdot \frac{1}{n})-\sin(2\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot \Big( 2\sin(2\cdot \frac{1}{n})\cos(2\cdot \frac{1}{n})-\sin(2\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot\sin(2\cdot \frac{1}{n}) \Big( 2\cos(2\cdot \frac{1}{n})-1 \Big) \\ \hline \end{array}\\ && \begin{array}{|rcl|} \hline \sin(\frac{3}{n})\cos(\frac{1}{n}) &=& \dfrac12\cdot \Big( \sin(3\cdot \frac{1}{n}-\frac{1}{n})+ \sin(3\cdot \frac{1}{n}+\frac{1}{n}) \Big) \\ &=& \dfrac12\cdot \Big( \sin(2\cdot \frac{1}{n})+ \sin(4\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot \Big( \sin(4\cdot \frac{1}{n})+\sin(2\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot \Big( 2\sin(2\cdot \frac{1}{n})\cos(2\cdot \frac{1}{n})+\sin(2\cdot \frac{1}{n}) \Big) \\ &=& \dfrac12\cdot\sin(2\cdot \frac{1}{n}) \Big( 2\cos(2\cdot \frac{1}{n})+1 \Big) \\ \hline \end{array}\\\\ &=& \lim \limits_{n\to \infty} \dfrac{1}{3}\cdot \dfrac{\dfrac12\cdot\sin(2\cdot \frac{1}{n}) \Big( 2\cos(2\cdot \frac{1}{n})-1 \Big)} {\dfrac12\cdot\sin(2\cdot \frac{1}{n}) \Big( 2\cos(2\cdot \frac{1}{n})+1 \Big)} \\\\ &=& \lim \limits_{n\to \infty} \dfrac{1}{3}\cdot \dfrac{\Big( 2\cos(2\cdot \frac{1}{n})-1 \Big)} {\Big( 2\cos(2\cdot \frac{1}{n})+1 \Big)} \quad |\quad \lim \limits_{n\to \infty} \frac{1}{n} = 0 \\\\ &=& \dfrac{1}{3}\cdot \dfrac{\Big( 2\cos(0)-1 \Big)} {\Big( 2\cos(0)+1 \Big)} \quad | \quad \cos(0)=1 \\\\ &=& \dfrac{1}{3}\cdot \dfrac{\Big( 2\cdot 1-1 \Big)} {\Big( 2\cdot 1+1 \Big)} \\\\ &=& \dfrac{1}{3}\cdot \dfrac{ 1 } { 3 } \\\\ &\mathbf{=}& \mathbf{ \dfrac{1}{9} } \\ \hline \end{array} \)

 

 

laugh

19 Des 2018