Actually...it's a pretty good question.....!!!
The surface area(s) are given by 2*pi*r*h (lateral SA) + pi*r^2 (SA of bottom) .... So we have.....
2*pi*r*h + pi*r^2 = 3000 And if h = 50, we have
2*pi*r*(50) + pi*r^2 = 3000
100*pi*r + pi*r^2 = 3000 Divide both sides by pi
100r + r^2 = 3000/pi Subtract 3000/pi from both sides
r^2 + 100r - 3000/pi = 0 Using the on-site calculator to solve, we have....
r2+100×r−3000π=0⇒{r=−(2×5(32)×√5×π2+6×π+50×π)πr=(2×5(32)×√5×π2+6×π−50×π)π}⇒{r=−108.7786496829535187r=8.7786496829535187}
Reject the negative solution........so the radius is about 8.78 cm
