PQ = sqrt [ 2^2 + 3^2 ] = sqrt [ 13]
AQ = sqrt [1^2 + 4^2 ] sqrt [17]
PA = sqrt [2^2 + 4^2] = sqrt [ 20]
Law of Cosines
PQ^2 = AQ^2 + PA^2 - 2 ( AQ * PA) (cos PAQ)
13 = 17 + 20 - 2( sqrt 340) * cos (PAQ)
[ 13 - 17 -20 ] / [ -2sqrt 340 ] = cos (PAQ) = 6/sqrt 85
sin PAQ = sqrt [ 85 - 6^2 ] / sqrt 85 = sqrt [ 49] / sqrt 85 = 7 / sqrt 85