Law of Cosines
BC =sqrt [BD^2 + DC^2 -2 (BD * dC) cos 60]
BC =sqrt [ 4^2 + 5^2 - 2(4*5) * (1/2) ] = sqrt 21
Law of Sines
sin BCD / BD = sin BDC / BC
sin BCD = BD * sin BDC /BC
xin BCD = 4 sqrt (3) /2 / sqrt 21
sin BCD = 2sqrt (3) / sqrt (21) = 2/sqrt 7
Since BCD and ACE are complementary, then sin BCD = cos ACE = 2/sqrt 7
sin ACE = sqrt [ 7 - 4] / sqrt 7 = sqrt (3)/sqrt (7)
sin AEC / sin ACE = AC / AE
sqrt (3) / 2 / [ sqrt (3)/sqrt(7) = sqrt (7) / 2 = AC /AE
AC = (sqrt (7) / 2) AE
Law of Cosines
AE^2 = AC^2 + CE^2 -2 ( AC * CE) cos ACE
AE^2 = (7/4)AE^2 + 4^2 - 2 ( sqrt (7) / 2 * AE * 4) (sqrt (3) /sqrt (7)
Let AE = x
x^2 = (7/4)x^2 + 16 - 4sqrt (3) x
(3/4)x^2 - 4sqrt(3)x + 16 = 0
3x^2 - 16sqrt (3)x + 64 = 0
Solving for x
x = 8 / sqrt 3 = AE