y = (x + 1) (x^2 + 1)^-1
y' = (x^2 + 1)^-1 - (x +1) (x^2 + 1)^-2 * 2x = 0
(x^2 + 1)^-2 [ (x^2 + 1) - 2x ( x + 1) ] = 0
-x^2 - 2x + 1 = 0
x^2 + 2x - 1 = 0
x^2 + 2x = 1
x^2 + 2x + 1 = 2
(x + 1)^2 = 2 take both roots
x + 1 = sqrt 2 x + 1 = -sqrt 2
x = sqrt (2) - 1 x = -sqrt (2) - 1
y = sqrt 2 / [ (sqrt (2) -1)^2 + 1] = sqrt 2 / [ 4 - 2sqrt 2] = max
y = -sqrt (2) / [ (-sqrt (2) - 1)^2 + 1 ] = -sqrt (2) / [ 4 + 2sqrt 2] = min
Sum of max and min = [ sqrt 2][ 4 + sqrt 8] / 8 - [sqrt 2][ 4 -sqrt 8] /8 =
2sqrt (16) / 8 =
[2 * 4] / 8 =
8 / 8 =
1