Well let's see...mutiply both sides by 3
3x^2 + 21x +159 = 11 Subtract 11 from both sides
3x^2 + 21x + 148 = 0
I can tell right away that this has no "real" solutions....Let's see what he "magic" calculator sez.......
$${\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{148}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{1\,335}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}\right)}{{\mathtt{6}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{1\,335}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{21}}\right)}{{\mathtt{6}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.089\: \!608\: \!635\: \!484\: \!241\: \!2}}{i}\right)\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.089\: \!608\: \!635\: \!484\: \!241\: \!2}}{i}\\
\end{array} \right\}$$
Yep...we get two "complex" solutions...as expected....