Processing math: 100%
 

hectictar

avatar
यूजर का नामhectictar
स्कोर9488
Membership
Stats
सवाल 10
जवाब 3005

 #2
avatar+9488 
+1

I think it is the opposite guest... IDK the best way to explain it, but look at this graph:

 

https://www.desmos.com/calculator/din2ukxbds

 

We wish to find the max value of A while keeping S and R positive.

That appears to occur when  S = 0  and  R = 8/pi

30 Okt 2020
 #1
avatar+9488 
+2

6j2 - 6j - 12

                          Factor  6  out of all the terms

=   6(j2 - j - 2)    (Notice here that if we distributed the 6, we would get back the previous expression.)

 

Now we want to force there to be a perfect square trinomial within the parenthesees. To do that, let's add and subtract half the coefficient of the middle term squared. That is, let's add and subtract  (1/2 * -1)2  which is  (-1/2)2  which is  1/4 . This will create a perfect square trinomial without changing the value of the expression.

 

=   6(j2 - j + 14 - 14 - 2)

                                       Now there is a perfect square trinomial which is highlighted below:

=   6(j2 - j + 14 - 14 - 2)

                                       Then  j2 - j + 1/4  factors as  (j - 1/2)2

=   6( (j - 12)2  - 14 - 2)

                                       And  2 = 8/4

=   6( (j - 12)2  - 14 - 84)

                                       And -1/4 - 8/4  =  -9/4

=   6( (j - 12)2  - 94 )

                                       Distribute  6  to the terms in parenthesees

=   6( j - 12 )2 -  6( 94 )

 

=   6( j - 12 )2272

 

Now it is in the form  c(j + p)2 + q,  where   c = 6,  p =  -12,  and  q = -272

 

So  q / p   =   ( -12 ) / ( -272 )   =   ( -12 ) * ( -227 )   =   127

.
25 Okt 2020