heureka

avatar
यूजर का नामheureka
स्कोर26367
Membership
Stats
सवाल 17
जवाब 5678

 #1
avatar+26367 
+7

The numbers 1,2,3,4,5,6,7,8,9 are arranged in a list so that each number is
either greater than all the numbers that come before it
or is less than all the numbers that come before it.
For example, 4,5,6,3,2,7,1,8,9 is one such list:
notice that (for instance) the 6 is greater than all the numbers that come before it,
and the 2 is less than all the numbers that come before it.
How many such lists of the numbers 1,2,3,4,5,6,7,8,9 are possible?

 

\(\begin{array}{|r|r|} \hline 1.) & 123456789 \\ 2.) & 213456789 \\ 3.) & 231456789 \\ 4.) & 234156789 \\ 5.) & 234516789 \\ 6.) & 234561789 \\ 7.) & 234567189 \\ 8.) & 234567819 \\ 9.) & 234567891 \\ 10.) & 321456789 \\ 11.) & 324156789 \\ 12.) & 324516789 \\ 13.) & 324561789 \\ 14.) & 324567189 \\ 15.) & 324567819 \\ 16.) & 324567891 \\ 17.) & 342156789 \\ 18.) & 342516789 \\ 19.) & 342561789 \\ 20.) & 342567189 \\ 21.) & 342567819 \\ 22.) & 342567891 \\ 23.) & 345216789 \\ 24.) & 345261789 \\ 25.) & 345267189 \\ 26.) & 345267819 \\ 27.) & 345267891 \\ 28.) & 345621789 \\ 29.) & 345627189 \\ 30.) & 345627819 \\ 31.) & 345627891 \\ 32.) & 345672189 \\ 33.) & 345672819 \\ 34.) & 345672891 \\ 35.) & 345678219 \\ 36.) & 345678291 \\ 37.) & 345678921 \\ 38.) & 432156789 \\ 39.) & 432516789 \\ 40.) & 432561789 \\ 41.) & 432567189 \\ 42.) & 432567819 \\ 43.) & 432567891 \\ 44.) & 435216789 \\ 45.) & 435261789 \\ 46.) & 435267189 \\ 47.) & 435267819 \\ 48.) & 435267891 \\ 49.) & 435621789 \\ 50.) & 435627189 \\ 51.) & 435627819 \\ 52.) & 435627891 \\ 53.) & 435672189 \\ 54.) & 435672819 \\ 55.) & 435672891 \\ 56.) & 435678219 \\ 57.) & 435678291 \\ 58.) & 435678921 \\ 59.) & 453216789 \\ 60.) & 453261789 \\ 61.) & 453267189 \\ 62.) & 453267819 \\ 63.) & 453267891 \\ 64.) & 453621789 \\ 65.) & 453627189 \\ 66.) & 453627819 \\ 67.) & 453627891 \\ 68.) & 453672189 \\ 69.) & 453672819 \\ 70.) & 453672891 \\ 71.) & 453678219 \\ 72.) & 453678291 \\ 73.) & 453678921 \\ 74.) & 456321789 \\ 75.) & 456327189 \\ 76.) & 456327819 \\ 77.) & 456327891 \\ 78.) & 456372189 \\ 79.) & 456372819 \\ 80.) & 456372891 \\ 81.) & 456378219 \\ 82.) & 456378291 \\ 83.) & 456378921 \\ 84.) & 456732189 \\ 85.) & 456732819 \\ 86.) & 456732891 \\ 87.) & 456738219 \\ 88.) & 456738291 \\ 89.) & 456738921 \\ 90.) & 456783219 \\ 91.) & 456783291 \\ 92.) & 456783921 \\ 93.) & 456789321 \\ 94.) & 543216789 \\ 95.) & 543261789 \\ 96.) & 543267189 \\ 97.) & 543267819 \\ 98.) & 543267891 \\ 99.) & 543621789 \\ 100.) & 543627189 \\ 101.) & 543627819 \\ 102.) & 543627891 \\ 103.) & 543672189 \\ 104.) & 543672819 \\ 105.) & 543672891 \\ 106.) & 543678219 \\ 107.) & 543678291 \\ 108.) & 543678921 \\ 109.) & 546321789 \\ 110.) & 546327189 \\ 111.) & 546327819 \\ 112.) & 546327891 \\ 113.) & 546372189 \\ 114.) & 546372819 \\ 115.) & 546372891 \\ 116.) & 546378219 \\ 117.) & 546378291 \\ 118.) & 546378921 \\ 119.) & 546732189 \\ 120.) & 546732819 \\ 121.) & 546732891 \\ 122.) & 546738219 \\ 123.) & 546738291 \\ 124.) & 546738921 \\ 125.) & 546783219 \\ 126.) & 546783291 \\ 127.) & 546783921 \\ 128.) & 546789321 \\ 129.) & 564321789 \\ 130.) & 564327189 \\ 131.) & 564327819 \\ 132.) & 564327891 \\ 133.) & 564372189 \\ 134.) & 564372819 \\ 135.) & 564372891 \\ 136.) & 564378219 \\ 137.) & 564378291 \\ 138.) & 564378921 \\ 139.) & 564732189 \\ 140.) & 564732819 \\ 141.) & 564732891 \\ 142.) & 564738219 \\ 143.) & 564738291 \\ 144.) & 564738921 \\ 145.) & 564783219 \\ 146.) & 564783291 \\ 147.) & 564783921 \\ 148.) & 564789321 \\ 149.) & 567432189 \\ 150.) & 567432819 \\ 151.) & 567432891 \\ 152.) & 567438219 \\ 153.) & 567438291 \\ 154.) & 567438921 \\ 155.) & 567483219 \\ 156.) & 567483291 \\ 157.) & 567483921 \\ 158.) & 567489321 \\ 159.) & 567843219 \\ 160.) & 567843291 \\ 161.) & 567843921 \\ 162.) & 567849321 \\ 163.) & 567894321 \\ 164.) & 654321789 \\ 165.) & 654327189 \\ 166.) & 654327819 \\ 167.) & 654327891 \\ 168.) & 654372189 \\ 169.) & 654372819 \\ 170.) & 654372891 \\ 171.) & 654378219 \\ 172.) & 654378291 \\ 173.) & 654378921 \\ 174.) & 654732189 \\ 175.) & 654732819 \\ 176.) & 654732891 \\ 177.) & 654738219 \\ 178.) & 654738291 \\ 179.) & 654738921 \\ 180.) & 654783219 \\ 181.) & 654783291 \\ 182.) & 654783921 \\ 183.) & 654789321 \\ 184.) & 657432189 \\ 185.) & 657432819 \\ 186.) & 657432891 \\ 187.) & 657438219 \\ 188.) & 657438291 \\ 189.) & 657438921 \\ 190.) & 657483219 \\ 191.) & 657483291 \\ 192.) & 657483921 \\ 193.) & 657489321 \\ 194.) & 657843219 \\ 195.) & 657843291 \\ 196.) & 657843921 \\ 197.) & 657849321 \\ 198.) & 657894321 \\ 199.) & 675432189 \\ 200.) & 675432819 \\ 201.) & 675432891 \\ 202.) & 675438219 \\ 203.) & 675438291 \\ 204.) & 675438921 \\ 205.) & 675483219 \\ 206.) & 675483291 \\ 207.) & 675483921 \\ 208.) & 675489321 \\ 209.) & 675843219 \\ 210.) & 675843291 \\ 211.) & 675843921 \\ 212.) & 675849321 \\ 213.) & 675894321 \\ 214.) & 678543219 \\ 215.) & 678543291 \\ 216.) & 678543921 \\ 217.) & 678549321 \\ 218.) & 678594321 \\ 219.) & 678954321 \\ 220.) & 765432189 \\ 221.) & 765432819 \\ 222.) & 765432891 \\ 223.) & 765438219 \\ 224.) & 765438291 \\ 225.) & 765438921 \\ 226.) & 765483219 \\ 227.) & 765483291 \\ 228.) & 765483921 \\ 229.) & 765489321 \\ 230.) & 765843219 \\ 231.) & 765843291 \\ 232.) & 765843921 \\ 233.) & 765849321 \\ 234.) & 765894321 \\ 235.) & 768543219 \\ 236.) & 768543291 \\ 237.) & 768543921 \\ 238.) & 768549321 \\ 239.) & 768594321 \\ 240.) & 768954321 \\ 241.) & 786543219 \\ 242.) & 786543291 \\ 243.) & 786543921 \\ 244.) & 786549321 \\ 245.) & 786594321 \\ 246.) & 786954321 \\ 247.) & 789654321 \\ 248.) & 876543219 \\ 249.) & 876543291 \\ 250.) & 876543921 \\ 251.) & 876549321 \\ 252.) & 876594321 \\ 253.) & 876954321 \\ 254.) & 879654321 \\ 255.) & 897654321 \\ 256.) & 987654321 \\ \hline \end{array}\)

 

There are 256 lists of the numbers 1,2,3,4,5,6,7,8,9 possible.

 

laugh

28 Jan 2019
 #1
avatar+26367 
+8

If I have a list of 5 numbers each of them following another [1,2,3,4,5] and I want to multiply all of them together. 

How do I write (1*2)+(1*3)+(1*4)+(1*5)+(2*3)+(2*4)+(2*5)+(3*4)+(3*5)+(4*5)

But with 4000 numbers in the list instead of 5 without having to write every instance out?

Is it possible to make a rule and calculate it in a common calculator? 

 

Table:

\(\begin{array}{|r|r|r|r|r|r} \hline \text{multiply} & 1 & 2 & 3 & 4 & 5 \\ \hline 1 & \color{red}1 & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \hline 2 & \color{grey}2 & \color{red}4 & \mathbf{6} & \mathbf{8} & \mathbf{10} \\ \hline 3 & \color{grey}3 & \color{grey}6 & \color{red}9 & \mathbf{12} & \mathbf{15} \\ \hline 4 & \color{grey}4 & \color{grey}8 & \color{grey}12 & \color{red}16 & \mathbf{20} \\ \hline 5 & \color{grey}5 & \color{grey}10 & \color{grey}15 & \color{grey}20 & \color{red}25 \\ \hline sum & \color{blue}15 & \color{blue}30 & \color{blue}45 & \color{blue}60 & \color{blue}75 & \color{blue}\text{arithmetical sequence} \\ \hline \end{array} \)

 

\(\text{Let the sum of all numbers in the table $\mathbf{S} = \color{blue}{15+30+45+60+75} = \color{blue}225 $} \\ \begin{array}{rcll} \text{Let the sum we are looking for } \mathbf{s=} \\ && (1*2)+(1*3)+(1*4)+(1*5)\\ && +(2*3)+(2*4)+(2*5) \\ && +(3*4)+(3*5) \\ && +(4*5) \\ &=& \mathbf{2+3+4+5} \\ && \mathbf{+6+8+10} \\ && \mathbf{+12+15} \\ && \mathbf{+20} \\ &=& 85\\ \end{array} \\ \begin{array}{rcll} \text{Let the sum of all square numbers in the diagonal of the table $\mathbf{q} =$} \color{red}{1+4+9+16+25}=\color{red}55 \\ \end{array} \)

 

So we see the formula: \(\boxed{S = 2s + q}\)  or \(\boxed{s = \dfrac{1}{2}\cdot (S-q) }\)

 

\(\mathbf{ S=\ ?}\)

\(\begin{array}{|rcll|} \hline a_n &=& a_1+(n-1)d \quad | \quad d=a_1 \\ &=& a_1+(n-1)a_1 \\ &=& a_1+ na_1-a_1 \\ &=& na_1 \quad | \quad a_1=(1+n) \dfrac{n}{2} \\ &=& (1+n) \dfrac{n^2}{2} \\\\ S &=& (a_1 + a_n)\cdot \dfrac{n}{2} \\ &=& \left((1+n) \dfrac{n}{2} +(1+n) \dfrac{n^2}{2} \right)\cdot \dfrac{n}{2} \\ &=& \Big((1+n) +(1+n) n \Big)\cdot \dfrac{n^2}{4} \\ &=& (n^2+2n+1 )\cdot \dfrac{n^2}{4} \\ &=& (n+1)^2\cdot \dfrac{n^2}{4} \\ \mathbf{S} & \mathbf{=} & \mathbf{\left[\dfrac{(n+1)\cdot n}{2}\right]^2} \\ \hline \end{array}\)

 

\(\mathbf{ q=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{q} & \mathbf{=} & \mathbf{\dfrac{(n+1)\cdot n}{2}\cdot \dfrac{(2n+1)}{3}} \quad | \quad \text{from the formula collection} \\ \hline \end{array} \)

 

\(\mathbf{ s=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{s} & \mathbf{=} & \mathbf{ \dfrac{1}{2}\cdot (S-q) } \\ &=& \dfrac{1}{2}\cdot \left(\left[\dfrac{(n+1)\cdot n}{2}\right]^2 - \dfrac{(n+1)\cdot n}{2}\cdot \dfrac{(2n+1)}{3} \right) \\ &=& \dfrac{(n+1)\cdot n}{4}\cdot \left[ \dfrac{(n+1)\cdot n}{2} - \dfrac{(2n+1)}{3} \right] \\ &=& \dfrac{(n+1)\cdot n}{24}\cdot \Big[ 3n(n+1) - 2(2n+1) \Big] \\ &=& \dfrac{(n+1)\cdot n\cdot ( 3n^2-n-2)}{24} \\ &=& \dfrac{(n+1)\cdot n\cdot (3n+2)\cdot (n-1)}{24} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{(n-1)\cdot n \cdot (n+1)\cdot (3n+2)}{24} } \\ \hline \end{array}\)

 

Example: \([1,2,3,4,5]\)

So \(n = 5 \)

\(\begin{array}{|rcll|} \hline \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{(5-1)\cdot 5 \cdot (5+1)\cdot (3\cdot 5+2)}{24} } \\ &=& \dfrac{4\cdot 5 \cdot 6\cdot 17}{24} \\ &=& 5 \cdot 17 \\ &\mathbf{=}& \mathbf{85}\ \checkmark\\ \hline \end{array}\)

 

Example:\( [1,2,3,4,5, \ldots ,4000]\)

So \(n = 4000\)

\(\begin{array}{|rcll|} \hline \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{(4000-1)\cdot 4000 \cdot (4000+1)\cdot (3\cdot 4000+2)}{24} } \\ &=& \dfrac{3999\cdot 4000 \cdot 4001\cdot 12002 }{24} \\ &=& 1333\cdot 1000 \cdot 4001\cdot 6001 \\ &\mathbf{=}& \mathbf{32\ 005\ 331\ 333\ 000} \\ \hline \end{array} \)

 

 

laugh

25 Jan 2019
 #1
avatar+26367 
+8

Let $A_1 A_2 \dotsb A_{11}$ be a regular 11-gon inscribed in a circle of radius 2.

Let $P$ be a point, such that the distance from $P$ to the center of the circle is 3.

Find \[PA_1^2 + PA_2^2 + \dots + PA_{11}^2.\]

 

\(\text{Let $A_n=\dbinom{x_a}{y_a}$, $~x_a =2\cos\Big((n-1)\cdot \dfrac{360^{\circ}}{11} \Big)$, $~y_a =2\sin\Big((n-1)\cdot \dfrac{360^{\circ}}{11} \Big) $, $~ n=1,2,\ldots 11$ }\\ \text{Let $P=\dbinom{x_p}{y_p}$, $~x_p =3\cos(\beta)$, $~y_p =3\sin(\beta)$ } \\ \text{Let $PA^2 = (x_p-x_a)^2 + (y_p-y_a)^2$}\)

 

\(\begin{array}{|rcll|} \hline PA_1^2 &=& \left[ 3\cos(\beta) -2\cos\left(0\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 + \left[ 3\sin(\beta) -2\sin\left(0\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 \\ &=& 13 - 12\left[ \cos(\beta)\cos\left(0\cdot \dfrac{360^{\circ}}{11} \right) + \sin(\beta)\sin\left(0\cdot \dfrac{360^{\circ}}{11} \right)\right]\\\\ PA_2^2 &=& \left[ 3\cos(\beta) -2\cos\left(1\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 + \left[ 3\sin(\beta) -2\sin\left(1\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 \\ &=& 13 - 12\left[ \cos(\beta)\cos\left(1\cdot \dfrac{360^{\circ}}{11} \right) + \sin(\beta)\sin\left(1\cdot \dfrac{360^{\circ}}{11} \right)\right]\\\\ PA_3^2 &=& \left[ 3\cos(\beta) -2\cos\left(2\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 + \left[ 3\sin(\beta) -2\sin\left(2\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 \\ &=& 13 - 12\left[ \cos(\beta)\cos\left(2\cdot \dfrac{360^{\circ}}{11} \right) + \sin(\beta)\sin\left(2\cdot \dfrac{360^{\circ}}{11} \right)\right]\\\\ \ldots \\\\ PA_{11}^2 &=& \left[ 3\cos(\beta) -2\cos\left(10\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 + \left[ 3\sin(\beta) -2\sin\left(10\cdot \dfrac{360^{\circ}}{11} \right) \right]^2 \\ &=& 13 - 12\left[ \cos(\beta)\cos\left(10\cdot \dfrac{360^{\circ}}{11} \right) + \sin(\beta)\sin\left(10\cdot \dfrac{360^{\circ}}{11} \right)\right]\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && PA_1^2 + PA_2^2 + PA_3^2 + \dots + PA_{11}^2 \\\\ &=& 11\cdot 13 \\ && -12\cdot \Big\{ \cos(\beta) \Big(\underbrace{ \cos(0\cdot \dfrac{360^{\circ}}{11}) + \cos(1\cdot \dfrac{360^{\circ}}{11}) + \cos(2\cdot \dfrac{360^{\circ}}{11}) + \ldots + \cos(10\cdot \dfrac{360^{\circ}}{11}) }_{=0} \Big) \\ && +\sin(\beta) \Big(\underbrace{ \sin(0\cdot \dfrac{360^{\circ}}{11}) + \sin(1\cdot \dfrac{360^{\circ}}{11}) + \sin(2\cdot \dfrac{360^{\circ}}{11}) + \ldots + \sin(10\cdot \dfrac{360^{\circ}}{11}) \Big) }_{=0} \Big\} \\\\ &=& 11\cdot 13 -12\cdot \Big( \cos(\beta)\cdot 0 +\sin(\beta)\cdot 0 \Big) \\ &=& 11\cdot 13 -12\cdot 0 \\ &=& 11\cdot 13 \\ &\mathbf{=}& \mathbf{143} \\ \hline \end{array}\)

 

\(PA_1^2 + PA_2^2 + \dots + PA_{11}^2 = \mathbf{143}\)

 

laugh

25 Jan 2019