heureka

avatar
यूजर का नामheureka
स्कोर26376
Membership
Stats
सवाल 17
जवाब 5678

 #1
avatar+26376 
+1

If


\(\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + \dfrac{1}{n} + \dfrac{1}{62} + \dfrac{1}{126} + \dfrac{1}{248} = \dfrac{495}{496}\)


 what is the value of \(n\)?

 

\(\begin{array}{|rcll|} \hline \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{n} + \frac{1}{62} + \frac{1}{126} + \frac{1}{248} &=& \frac{495}{496} \quad | \quad \times 2 \\ \frac{2}{2} + \frac{2}{4} + \frac{2}{8} + \frac{2}{16} + \frac{2}{n} + \frac{2}{62} + \frac{2}{126} + \frac{2}{248} &=& \frac{495}{248} \\ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{2}{n} + \frac{1}{31} + \frac{1}{63} + \frac{2}{248} &=& \frac{495}{248} \\ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{2}{n} + \frac{1}{31} + \frac{1}{63} &=& \frac{495}{248} - \frac{2}{248} \\ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{2}{n} + \frac{1}{31} + \frac{1}{63} &=& \frac{493}{248} \quad | \quad \times 8 \\ 8 + \frac{8}{2} + \frac{8}{4} + \frac{8}{8} + \frac{16}{n} + \frac{8}{31} + \frac{8}{63} &=& \frac{493}{31} \\ 8 + 4 + 2 + 1 + \frac{16}{n} + \frac{8}{31} + \frac{8}{63} &=& \frac{493}{31} \\ 15 + \frac{16}{n} + \frac{8}{63} &=& \frac{493}{31} - \frac{8}{31} \\ 15 + \frac{16}{n} + \frac{8}{63} &=& \frac{485}{31} \\ \frac{16}{n} + \frac{8}{63} &=& \frac{485}{31} -15 \\ \frac{16}{n} + \frac{8}{63} &=& \frac{485-15*31}{31} \\ \frac{16}{n} + \frac{8}{63} &=& \frac{20}{31} \\ \frac{16}{n} &=& \frac{20}{31} - \frac{8}{63} \\ \frac{16}{n} &=& \frac{20*63-8*31}{31*63} \\ \frac{16}{n} &=& \frac{1012}{1953} \\ \frac{1}{n} &=& \frac{1012}{16*1953} \\ \frac{1}{n} &=& \frac{1012}{31248} \\ \frac{1}{n} &=& \frac{253}{7812} \\ \mathbf{n} &=& \mathbf{\frac{7812}{253}} \\ \hline \end{array}\)

 

 

laugh

15 Mei 2020
 #1
avatar+26376 
+1

In triangle ABC, E is on AB such that AE:EB = 3:2, and D is on AC such that AD:DC = 1:4.  
F is the intersection of BD and CE.  
Find EF:FC.

 

\(\begin{array}{lclcll} \text{Let $\vec{AB}=\vec{b}$ } && \text{Let $\vec{AC}=\vec{c}$ }\\\\ \text{Let $\dfrac{AE}{AB}=\lambda=\dfrac{3}{5} $ } && \text{Let $1-\lambda=\dfrac{2}{5} $ }\\ \text{Let $\dfrac{AD}{AC}=\mu=\dfrac{1}{5} $ } && \text{Let $1-\mu=\dfrac{4}{5} $ } \\ \text{Let $\dfrac{EF}{EC}=x $ } && \text{Let $\dfrac{FC}{EC}=1-x $ }\\ \text{Let $\dfrac{EF}{FC}=\frac{x}{1-x} $ }\\\\ \text{Let $\dfrac{DF}{DB}=\eta $ }\\\\ \text{Let $\vec{AE}=\lambda\vec{b}$ } && \text{Let $\vec{AD}=\mu\vec{c}$ }\\\\ \text{Let $\vec{EC}=\vec{AC}-\vec{AE}=\vec{c}-\lambda\vec{b}$ } &&\text{Let $\vec{DB}=\vec{AB}-\vec{AD}=\vec{b}-\mu\vec{c}$ } \\\\ \text{Let $\vec{EF}=x\vec{EC}=x(\vec{c}-\lambda\vec{b})$ } &&\text{Let $\vec{DF}=\eta\vec{DB}=\eta(\vec{b}-\mu\vec{c})$ } \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline \vec{AE} + \vec{EF} &=& \vec{AD} + \vec{DF} \\ \lambda\vec{b} + x(\vec{c}-\lambda\vec{b}) &=& \mu\vec{c} + \eta(\vec{b}-\mu\vec{c}) \\ \lambda\vec{b} + x\vec{c}-x\lambda\vec{b} &=& \mu\vec{c} + \eta\vec{b}-\eta\mu\vec{c} \\ \vec{b}(\underbrace{\lambda-x\lambda- \eta}_{=0} ) &=& \vec{c} (\underbrace{\mu-\eta\mu- x}_{=0}) \\ \hline \lambda-x\lambda- \eta &=& 0 \\ \eta &=& \lambda-x\lambda \\ \mathbf{ \eta } &=& \mathbf{ \lambda(1-x) } \\ \hline \mu-\eta\mu- x &=& 0 \\ x &=& \mu-\eta\mu \\ x &=& \mu-\lambda(1-x)\mu \\ x &=& \mu-\lambda\mu(1-x) \\ x &=& \mu-\lambda\mu + \lambda\mu x \\ x - \lambda\mu x &=& \mu-\lambda\mu \\ x (1- \lambda\mu) &=& \mu(1-\lambda) \\ \mathbf{x} &=& \mathbf{\dfrac{ \mu(1-\lambda)}{1- \lambda\mu} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{\dfrac{ \mu(1-\lambda)}{1- \lambda\mu} } \\\\ x &=& \dfrac{ \dfrac{1}{5}* \dfrac{2}{5}}{1- \dfrac{3}{5}*\dfrac{1}{5} } \\\\ x &=& \dfrac{ \dfrac{2}{25}}{1- \dfrac{3}{25} } \\\\ x &=& \dfrac{ \dfrac{2}{25}}{ \dfrac{22}{25} } \\\\ x &=& \dfrac{2}{22} \\\\ \mathbf{x} &=& \mathbf{\dfrac{1}{11}} \\\\ \mathbf{1-x} = 1-\dfrac{1}{11} &=& \mathbf{\dfrac{10}{11}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{EF}{FC} &=& \dfrac{x}{1-x} \\\\ \dfrac{EF}{FC} &=&\dfrac{ \dfrac{1}{11} } { \dfrac{10}{11} } \\\\ \mathbf{\dfrac{EF}{FC}} &=& \mathbf{\dfrac{1}{10}} \\ \hline \end{array}\)

 

laugh

15 Mei 2020
 #1
avatar+26376 
+2

The quadrilateral ABCD has right angles at A and D.

The numbers show the areas of the colored triangles.

Find the area of ABC

 

\(\begin{array}{|rcll|} \hline \dfrac{hb}{2} &=& 16 + 48 \quad \text{or} \quad \mathbf{\dfrac{hb}{2}=64} \qquad (1) \\\\ \mathbf{\dfrac{hb}{2}} &=& \mathbf{16+A_1} \qquad (2) \\ \hline \dfrac{hb}{2} = 64 &=& 16+A_1 \\ 64 &=& 16+A_1 \\ A_1 &=& 64-16 \\ \mathbf{A_1} &=& \mathbf{48} \\ \hline \end{array} \begin{array}{|rcll|} \hline \dfrac{ha}{2} &=& A_1+A_2 \quad |\quad \mathbf{A_1=48} \\\\ \mathbf{\dfrac{ha}{2}} &=& \mathbf{48+A_2} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{bh_1}{2} &=& 16 \quad \text{or} \quad \mathbf{h_1=\dfrac{32}{b}} \qquad (4) \\ \hline \dfrac{ah_2}{2} &=& A_2 \quad | \quad h = h_1+h_2 \quad \text{or} \quad \mathbf{h_2=h-h_1} \\\\ \dfrac{a(h-h_1)}{2} &=& A_2 \\\\ \dfrac{ah}{2} - \dfrac{ah_1}{2} &=& A_2\quad | \quad \mathbf{h_1=\dfrac{32}{b}} \\\\ \dfrac{ah}{2} - \dfrac{a\dfrac{32}{b}}{2} &=& A_2 \\\\ \dfrac{ah}{2} - \dfrac{16a}{b} &=& A_2 \quad | \quad \mathbf{\dfrac{ha}{2}= 48+A_2} \\\\ 48+A_2 - \dfrac{16a}{b} &=& A_2 \\\\ 48 - \dfrac{16a}{b} &=& 0 \\\\ \dfrac{16a}{b} &=& 48 \\\\ \dfrac{a}{b} &=& \dfrac{48}{16} \\\\ \mathbf{\dfrac{a}{b}} &=& \mathbf{3} \qquad (5) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(3)}{(1)}: & \dfrac{ \dfrac{ah}{2} } { \dfrac{bh}{2} } &=& \dfrac{48+A_2}{64} \\\\ & \dfrac{ah}{2} \cdot \dfrac{2}{bh} &=& \dfrac{48+A_2}{64} \\\\ & \dfrac{a}{b} &=& \dfrac{48+A_2}{64} \quad | \quad \mathbf{\dfrac{a}{b}=3} \\\\ & 3 &=& \dfrac{48+A_2}{64} \\\\ & 192 &=& 48+A_2 \\ & A_2 &=& 192-48 \\ & \mathbf{A_2} &=& \mathbf{144} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{The area of $ABCD$} &=& 16+48+A_1+A_2 \\ &=& 16+48+48+144 \\ \mathbf{\text{The area of $ABCD$}} &=& \mathbf{256} \\ \hline \end{array} \)

 

laugh

14 Mei 2020