heureka

avatar
यूजर का नामheureka
स्कोर26367
Membership
Stats
सवाल 17
जवाब 5678

 #3
avatar+26367 
+3

Geometry problem

\(\text{Let $RA=\dfrac{2}{5}AC $} \\ \text{Let $CR=\dfrac{3}{5}AC $} \\ \text{Let $AP=\dfrac{1}{4}AB $} \\ \text{Let $AQ=\dfrac{3}{4}AB $} \)

\(\begin{array}{|rcll|} \hline 2[ABC] &=& AB*AC*\sin(A) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline 2[ACQ] &=& AC*\dfrac{3}{4}AB*\sin(A) \\ 2[ACQ] &=& \dfrac{3}{4}AB*AC*\sin(A) \\ 2[ACQ] &=& \dfrac{3}{4}*2[ABC] \\ \mathbf{2[ACQ]} &=& \mathbf{\dfrac{3}{2}[ABC]} \\ \hline \end{array} \begin{array}{|rcll|} \hline [BQC] &=& [ABC]-[ACQ] \quad | \quad * 2 \\ 2[BQC] &=& 2[ABC]-2[ACQ] \\ 2[BQC] &=& 2[ABC]-2[ACQ] \quad | \quad \mathbf{2[ACQ]=\dfrac{3}{2}[ABC]} \\ 2[BQC] &=& 2[ABC]- \dfrac{3}{2}[ABC] \quad | \quad : 2 \\ [BQC] &=& [ABC]- \dfrac{3}{4}[ABC] \\ \mathbf{[BQC]} &=& \mathbf{\dfrac{1}{4}[ABC]} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline 2[ARQ] &=& \dfrac{2}{5}AC*\dfrac{3}{4}AB*\sin(A) \\ 2[ARQ] &=& \dfrac{3}{10}AB*AC*\sin(A) \\ 2[ARQ] &=& \dfrac{3}{10}*2[ABC] \\ \mathbf{2[ARQ]} &=& \mathbf{\dfrac{3}{5}[ABC]} \\ \hline \end{array} \begin{array}{|rcll|} \hline [CRQ] &=& [ACQ]-[ARQ] \quad | \quad * 2 \\ 2[CRQ] &=& 2[ACQ]-2[ARQ] \\ 2[CRQ] &=& 2[ACQ]-2[ARQ] \\ 2[CRQ] &=& \dfrac{3}{2}[ABC]- \dfrac{3}{5}[ABC] \quad | \quad : 2 \\ [CRQ] &=& \dfrac{3}{4}[ABC]- \dfrac{3}{10}[ABC] \\ [CRQ] &=& \left(\dfrac{3}{4}- \dfrac{3}{10}\right) [ABC] \\ [CRQ] &=& \left(\dfrac{30-12}{40}\right) [ABC] \\ [CRQ] &=& \left(\dfrac{18}{40}\right) [ABC] \\ \mathbf{[CRQ]} &=& \mathbf{\dfrac{9}{20}[ABC]} \\ \hline \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline \dfrac{[BQC]}{[CRQ]} &=& \dfrac{\dfrac{1}{4}[ABC]}{\dfrac{9}{20}[ABC]} \\\\ \dfrac{[BQC]}{[CRQ]} &=& \dfrac{\dfrac{1}{4}}{\dfrac{9}{20}} \\\\ \dfrac{[BQC]}{[CRQ]} &=& \dfrac{1}{4} *\dfrac{20}{9} \\\\ \mathbf{\dfrac{[BQC]}{[CRQ]}} &=& \mathbf{\dfrac{5}{9} } \\ \hline \end{array}\)

 

laugh

21 Mei 2020
 #1
avatar+26367 
+1

If
\(x(a + b) + y(a - b) = 2\)
and
\(ax + by = \dfrac{a^2 + b^2} {a^2 - b^2}\),
then express \(\dfrac{1}{x} + \dfrac{1}{y}\) in terms of \(a\) and \(b\).

 

\(\begin{array}{|rcll|} \hline \mathbf{x(a + b) + y(a - b)} &=& \mathbf{2} \\\\ y(a - b) &=& 2-x(a + b) \\\\ \mathbf{y} &=& \mathbf{\dfrac{2-x(a + b)} {a - b}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{ax + by } &=& \mathbf{ \dfrac{a^2 + b^2} {a^2 - b^2}} \\\\ ax + b\left( \dfrac{2-x(a + b)} {a - b} \right) &=& \dfrac{a^2 + b^2} {a^2 - b^2} \\\\ ax + b\left( \dfrac{2-x(a + b)} {a - b} \right) &=& \dfrac{a^2 + b^2} {(a-b)(a+b)} \quad | \quad *(a-b) \\\\ a(a-b)x + b\Big(2-x(a + b) \Big) &=& \dfrac{a^2 + b^2} {a+b} \\\\ a(a-b)x + 2b-xb(a + b) &=& \dfrac{a^2 + b^2} {a+b} \\\\ x\Big( a(a-b)-b(a + b)\Big) + 2b &=& \dfrac{a^2 + b^2} {a+b} \\\\ x( a^2-2ab-b^2) + 2b &=& \dfrac{a^2 + b^2} {a+b} \\\\ x( a^2-2ab-b^2) &=& \dfrac{a^2 + b^2} {a+b} -2b \\\\ x( a^2-2ab-b^2) &=& \dfrac{a^2 + b^2-2b(a+b)} {a+b} \\\\ x( a^2-2ab-b^2) &=& \dfrac{a^2 + b^2-2ab-2b^2} {a+b} \\\\ x( a^2-2ab-b^2) &=& \dfrac{a^2 -2ab -b^2} {a+b} \quad | \quad :a^2-2ab-b^2 \\\\ x&=& \dfrac{1} {a+b} \\\\ \mathbf{\dfrac{1}{x}} &=& \mathbf{a+b} \\ \hline \mathbf{y} &=& \mathbf{\dfrac{2-x(a + b)} {a - b}} \\\\ \dfrac{1}{y} &=& \dfrac {a - b} {2-x(a + b)} \quad | \quad \mathbf{x=\dfrac{1} {a+b}} \\\\ \dfrac{1}{y} &=& \dfrac {a - b} {2-\dfrac{1} {(a+b)}(a + b)} \\\\ \dfrac{1}{y} &=& \dfrac {a - b} {2-1} \\\\ \mathbf{\dfrac{1}{y}} &=& \mathbf{a-b} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{1}{x} + \dfrac{1}{y} &=& (a+b) + (a-b) \\\\ \mathbf{\dfrac{1}{x} + \dfrac{1}{y}} &=& \mathbf{2a} \\ \hline \end{array}\)

 

laugh

20 Mei 2020