LiIIiam0216

avatar
यूजर का नामLiIIiam0216
स्कोर2725
Membership
Stats
सवाल 674
जवाब 32

 #4
avatar+2725 
0

To determine how many points \((x, y)\) where both \(x\) and \(y\) are positive integers lie below the hyperbola \(xy = 16\), we need to find the integer pairs \((x, y)\) such that \(xy < 16\).

 

### Step-by-Step Solution:

 

1. **Consider values of \(x\) and find corresponding \(y\) values**:


   For each \(x\), \(y\) must satisfy \(1 \leq y < \frac{16}{x}\).

 

2. **Calculate pairs for each \(x\)**:


   - \(x = 1\):


     \[
     xy < 16 \implies y < \frac{16}{1} \implies y < 16 \implies y = 1, 2, 3, \ldots, 15 \quad (\text{15 values})
     \]


   - \(x= 2\):
     \[
     xy < 16 \implies y < \frac{16}{2} \implies y < 8 \implies y = 1, 2, 3, \ldots, 7 \quad (\text{7 values})
     \]


   - \(x = 3\):
     \[
     xy < 16 \implies y < \frac{16}{3} \implies y < 5.33 \implies y = 1, 2, 3, 4, 5 \quad (\text{5 values})
     \]


   - \(x = 4\):
     \[
     xy < 16 \implies y < \frac{16}{4} \implies y < 4 \implies y = 1, 2, 3 \quad (\text{3 values})
     \]


   - \(x = 5\):
     \[
     xy < 16 \implies y < \frac{16}{5} \implies y < 3.2 \implies y = 1, 2, 3 \quad (\text{3 values})
     \]


   - \(x = 6\):
     \[
     xy < 16 \implies y < \frac{16}{6} \implies y < 2.67 \implies y = 1, 2 \quad (\text{2 values})
     \]


   - \(x = 7\):
     \[
     xy < 16 \implies y < \frac{16}{7} \implies y < 2.29 \implies y = 1, 2 \quad (\text{2 values})
     \]


   - \(x = 8\):
     \[
     xy < 16 \implies y < \frac{16}{8} \implies y < 2 \implies y = 1 \quad (\text{1 value})
     \]


   - \(x = 9\) and higher:
     \[
     xy < 16 \implies y < \frac{16}{x} \implies y < \frac{16}{x} \implies y = 1 \quad (\text{1 value if } x \leq 15 \text{ else no values})
     \]

 

3. **Count the total number of pairs**:


   Summing all the valid \(y\) values for each \(x\):
   \[
   15 + 7 + 5 + 3 + 3 + 2 + 2 + 1 + 1 = 39
   \]

 

Therefore, there are \( \boxed{39} \) points of the form \((x, y)\) where both coordinates are positive integers and lie below the hyperbola \(xy = 16\).

24 Jul 2024