Simplify the following:
(2 x^2+3 x-20)/(x^2+6 x+8)
The factors of 8 that sum to 6 are 4 and 2. So, x^2+6 x+8 = (x+4) (x+2):
(2 x^2+3 x-20)/(x+4) (x+2)
Factor the quadratic 2 x^2+3 x-20. The coefficient of x^2 is 2 and the constant term is -20. The product of 2 and -20 is -40. The factors of -40 which sum to 3 are -5 and 8. So 2 x^2+3 x-20 = 2 x^2+8 x-5 x-20 = 4 (2 x-5)+x (2 x-5):
4 (2 x-5)+x (2 x-5)/((x+4) (x+2))
Factor 2 x-5 from 4 (2 x-5)+x (2 x-5):
(2 x-5) (x+4)/((x+4) (x+2))
((2 x-5) (x+4))/((x+4) (x+2)) = (x+4)/(x+4)×(2 x-5)/(x+2) = (2 x-5)/(x+2):
Answer: |(2x - 5) / (x + 2)
2x^2+3x-20/ x^2+6x+8 {nl} Factorisation
2x2+3x−20=0
a b c
x=−3±√32−4∗2∗(−20)2∗2
x=−34±√169
x1=12.25 x2=−13.75
x2+6x+8
p q
x=−p2±√p24−q
x=−3±√9−8
\(2x2+3x−20x2+6x+8 = (x−12.25)×(x+13.75)(x+2)×(x+4)\)
\( {\color{blue}\frac{2x^2+3x-20}{x^2+6x+8}}\) = \({\color{blue}\frac{(x-12.25)\times(x+13.75)}{(x+2)\times(x+4)}}\)