We can use the fact that $625=5^4$ and $64=2^6$ to rewrite the given equation as:
(5^4)^x = 2^6
Simplifying the left-hand side using the power of a power rule gives:
5^(4x) = 2^6
We can solve for $x$ by taking the logarithm of both sides with respect to 4, 2 or any other base:
4xlog5(5)=6log5(2) 4x=6log5(5)−log5(2) 4x=61−log2(5) x=32(1−log2(5))
Now, to find $125^x$, we can use the fact that $125=5^3$ and substitute the value we found for $x$:
125^x = (5^3)^(3/(2(1 - log_2(5))) = 5^(9/2(1 - log_2(5)))
Therefore, the value of 125^x is:
5^(9/2(1 - log_2(5))) = 10*sqrt(5)
If625x=64thenfind125x 625=54125=5364=43=26 625x=6453x⋅43=64(125x)43=43(125x)=43⋅34125x=494125x=42∗41/4125x=42∗21/2125x=16√2
NOTE: I could easily have made a careless error.
LaTex
If \quad 625^x=64\qquad then\;find\qquad 125^x\\~\\
625=5^4\\
125=5^3\\
64=4^3=2^6\\~\\
625^x=64\\
5^{3x\cdot \frac{4}{3}}=64\\
(125^x)^{\frac{4}{3}}=4^3\\
(125^x)=4^{3 \cdot \frac{3}{4}}\\
125^x=4^{\frac{9}{4}}\\
125^x=4^2*4^{1/4}\\
125^x=4^2*2^{1/2}\\
125^x=16\sqrt2