Processing math: 100%
 
+0  
 
0
473
3
avatar

The roots of  x^2 + 8x + 4 are the same as the roots of Ax^2 + 16x + B . What is A + B?

 May 20, 2021

Best Answer 

 #1
avatar+2407 
+1

x^2 + 8x + 4 will have the same roots as 2(x^2 + 8x + 4).

2(x^2 + 8x + 4) = 2x^2 + 16x + 8

2 + 8 = 10

 

=^._.^=

 May 20, 2021
 #1
avatar+2407 
+1
Best Answer

x^2 + 8x + 4 will have the same roots as 2(x^2 + 8x + 4).

2(x^2 + 8x + 4) = 2x^2 + 16x + 8

2 + 8 = 10

 

=^._.^=

catmg May 20, 2021
 #2
avatar+26396 
+2

The roots of  x2+8x+4 are the same as
the roots of Ax2+16x+B .
What is A+B?

 

(x1+x2)=8=16A8A=16A=2x1x2=4=BAB=4AB=42B=8A+B=2+8A+B=10

 

laugh

 May 20, 2021
 #3
avatar+876 
+2

By Vieta's, we have $r_1 + r_2 = - \frac{8}{1} = -8$ and $r_1 r_2 = \frac{4}{1} = 4.$

We also have $r_1 + r_2 = - \frac{16}{A}$ and $r_1 r_2 = \frac{B}{A}.$

Thus, we have $- \frac{16}{A} = - \frac{8}{1} \Rightarrow \frac{2}{A} = 1 \Rightarrow A = 2.$

We also have $4 = \frac{B}{A} \Rightarrow 4 = \frac{B}{2} \Rightarrow B = 8.$

$2+8 = \boxed{10}.$

 

I could've noted the fact that $a_{n-1} = \frac{b_{n-1}}{2},$ but visualizations are somewhat unreliable. 

 

laugh

 May 20, 2021

3 Online Users