Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
509
3
avatar+47 

The expression $x^2 + 13x + 30$ can be written as $(x + a)(x + b),$ and the expression $x^2 + 5x - 50$ written as $(x + b)(x - c)$, where $a$, $b$, and $c$ are integers. What is the value of $a + b + c$?

 Jun 23, 2021
 #1
avatar+526 
+1

x2+13x+30=x2+3x+10x+30

                           =x(x+3)+10(x+3)

                           =(x+3)(x+10)

⇒ a = 3   and  b = 10 

 

x2+5x50=x2+10x5x50

                         =x(x+10)5(x+10)

                         =(x+10)(x5)

⇒ c = 5

 

a+b+c=3+10+5=18

 Jun 23, 2021
 #3
avatar+876 
+1

@amygdaleon305, nice solution! Next time, consider using the \begin{align*} environment.

Your solution in that environment(you can view the code by double-clicking the TeX and clicking view TeX commands):

x2+13x+30=x2+3x+10x+30=x(x+3)+10(x+3)=(x+3)(x+10)

$\Rightarrow$ $a = 3$ and $b = 10$

x2+5x50=x2+10x5x50=x(x+10)5(x+10)=(x+10)(x5)

$\Rightarrow c = 5$

$a + b + c = 3 + 10 + 5 = \boxed{18}$

MathProblemSolver101  Jun 23, 2021
 #2
avatar+876 
+1

$x^2 + 13x + 30 = (x+10)(x+3)$

$x^2 + 5x - 50 = (x+10)(x-5)$

$10 + 3 + 5 = \boxed{18}$

 Jun 23, 2021

1 Online Users