Processing math: 100%
 
+0  
 
0
43
2
avatar+101 

In triangle ABC, point X is on side ¯BC such that AX=13, BX=10, CX=4, and the circumcircles of triangles ABX and ACX have the same radius. Find the area of triangle ABC

 Feb 14, 2024
 #1
avatar+199 
+1

Let r be the radius of the circumcircles of triangles ABX and ACX. Since the circumcircles have the same radius, we know ∠A=∠C.

 

Since AX=13 and CX=4, we can use the Law of Sines on triangle ACX to find AC:

\begin{align*} \frac{\sin C}{AC} &= \frac{\sin A}{AX} \\

\sin C &= \frac{AC}{AX} \cdot \sin A \\

\sin C &= \frac{AC}{13} \cdot \sin C \\

AC &= 13 \end{align*}

 

Similarly, using the Law of Sines on triangle ABX to find AB:

sinBAB=sinAAXsinB=ABAXsinAsinB=AB13sinAAB=13

 

Now that we know all side lengths of triangle ABC, we can use Heron's formula to find the area:

Area of ABC=s(sAB)(sAC)(sBC)=(13+13+4)/2(13+413)/2(13410)/2(41013)/2=300317=91

 Feb 14, 2024
 #2
avatar+101 
0

I'm afraid that's not coreect. 

Vxritate  Feb 15, 2024

4 Online Users

avatar