In triangle ABC, point X is on side ¯BC such that AX=13, BX=10, CX=4, and the circumcircles of triangles ABX and ACX have the same radius. Find the area of triangle ABC.
Let r be the radius of the circumcircles of triangles ABX and ACX. Since the circumcircles have the same radius, we know ∠A=∠C.
Since AX=13 and CX=4, we can use the Law of Sines on triangle ACX to find AC:
\begin{align*} \frac{\sin C}{AC} &= \frac{\sin A}{AX} \\
\sin C &= \frac{AC}{AX} \cdot \sin A \\
\sin C &= \frac{AC}{13} \cdot \sin C \\
AC &= 13 \end{align*}
Similarly, using the Law of Sines on triangle ABX to find AB:
sinBAB=sinAAXsinB=ABAX⋅sinAsinB=AB13⋅sinAAB=13
Now that we know all side lengths of triangle ABC, we can use Heron's formula to find the area:
Area of ABC=√s(s−AB)(s−AC)(s−BC)=√(13+13+4)/2⋅(13+4−13)/2⋅(13−4−10)/2⋅(4−10−13)/2=√30⋅0⋅−3⋅−17=91