Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
874
6
avatar

The general form of the equation of an ellipse is 4x2+9y264x+72y+364=0. Write the equation in standard form and give the coordinates of the center, the length of the major axis, and the length of the minor axis. Then graph the ellipse.

 Jun 2, 2014

Best Answer 

 #5
avatar+130466 
+8

Yeah.....I ROCK !!!   I ROCK!!!

 

 Jun 2, 2014
 #1
avatar
0

Also one more question on hyperbolas if you don't mine :/

-------

The general form of the equation of a hyperbola is 16x2y2+32x+2y1=0. Write the equation of this hyperbola in standard form and give the coordinates of the center, the coordinates of the vertices, and the equations of the asymptotes. Thengraph the hyperbola. 

 

--

 

Thank you so much guys. 

 Jun 2, 2014
 #2
avatar+130466 
+8

4x^2 + 9y^2 -64x + 72y + 364 = 0   Subtract 364 from both sides

4x^2 + 9y^2 -64x + 72y = -364        Complete the square on x and y

4(x^2 - 16x + 64) +9(y^2 + 8y + 16) = -364 + 256 + 144

4(x - 8)^2 + 9(y + 4)^2 = 36                divide both sides by 36

(x-8)^2 / 9  +  (y+4)^2 / 4   = 1

The center is (8, -4)

The length of the major axis = 2(3) = 6

The length of the minor axis = 2(2) = 4

 Jun 2, 2014
 #3
avatar
+3

Thank you CPhill. You rock :D

 Jun 2, 2014
 #4
avatar+130466 
+8

Hyperbola

16x^2 - y^2 +32x  +2y - 1 = 0    Add 1 to both sides

16x^2 - y^2 +32x  +2y  = 1        Complete the square on x and y

16(x^2 + 2x + 1) - (y^2 - 2y +1) = 1 + 16 -1

16(x + 1)^2 - (y -1)^2 = 16         divide both sides by 16

(x+1)^2 - (y-1)^2 / 16  = 1

The center is (-1, 1)

The vertices are (-1± a, 1) = (-2,1) and (0,1)

The equations of the asymptotes are y =±b/a = ±4x

 Jun 2, 2014
 #5
avatar+130466 
+8
Best Answer

Yeah.....I ROCK !!!   I ROCK!!!

 

CPhill Jun 2, 2014
 #6
avatar+118703 
+3

You could use that picture as your avatar Chris - It's cool!

I sent you some other ideas for an avatar.  But you have to check your mail!

 Jun 3, 2014

2 Online Users

avatar