Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1055
6
avatar+62 

f(x)=?

 Jan 13, 2015

Best Answer 

 #4
avatar+118696 
+10

I am going to use quotient rule.

u=(x+1)0.5u=0.5(x+1)0.5v=(x+2)[sin(3x+2)]2v=1[sin(3x+2)]2+2(sin(3x+2))cos(3x+2)3v=sin2(3x+2)+6sin(3x+2)cos(3x+2)dydx=(e+1)3vu+uvv2vu=(x+2)sin2(3x+2)0.5(x+1)0.5vu=0.5(x+2)sin2(3x+2)(x+1)0.5uv=(x+1)0.5sin2(3x+2)+6sin(3x+2)cos(3x+2)uv=(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5

 

vu=0.5(x+2)sin2(3x+2)(x+1)0.5uv=(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5vu+uv=0.5(x+2)sin2(3x+2)+(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5

 

vu+uvv2=[0.5(x+2)sin2(3x+2)]+[(x+1)sin2(3x+2)]+[6sin(3x+2)cos(3x+2)(x+1)0.5](x+2)2sin4(3x+2)(x+1)0.5vu+uvv2=[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5

 

dydx=(e+1)3×[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5

 

 

There is probably only about 1000 mistakes in there.

Let's see what Heureka found   ( I saw Heureka's pop-up)

 Jan 13, 2015
 #1
avatar
+5

Is (3x+2)^2     really in degrees?

radians are used for calculus.

 Jan 13, 2015
 #2
avatar+62 
0

I replaced with pictures.

 Jan 13, 2015
 #3
avatar+26396 
+10

 f(x)=(e+1)3x+1(x+2)sin2(3x+2) \samll f(x)=? $$ f(x)=(e+1)3x+1(x+2)sin2(3x+2)=(e+1)3(x+11x+21sin(3x+2)1sin(3x+2)) $$ f(x)=(e+1)3x+1(x+2)sin2(3x+2)((x+1)x+1(x+2)x+2(sin(3x+2))sin(3x+2)(sin(3x+2))sin(3x+2)) $$ f(x)=(e+1)3x+1(x+2)sin2(3x+2)(12x+1x+11x+23cos(3x+2)sin(3x+2)3cos(3x+2)sin(3x+2)) $$ f(x)=(e+1)3x+1(x+2)sin2(3x+2)(12x+1x+11x+223cos(3x+2)sin(3x+2)) $$ f(x)=(e+1)3x+1(x+2)sin2(3x+2)(12(x+1)1x+26cos(3x+2)sin(3x+2)) $$ P.S. (uv)=uv(uu+vv) and (uv)=uv(uuvv) and (uvw)=uvw(uuvvww) and (uvww)=uvww(uuvvwwww) 

.
 Jan 13, 2015
 #4
avatar+118696 
+10
Best Answer

I am going to use quotient rule.

u=(x+1)0.5u=0.5(x+1)0.5v=(x+2)[sin(3x+2)]2v=1[sin(3x+2)]2+2(sin(3x+2))cos(3x+2)3v=sin2(3x+2)+6sin(3x+2)cos(3x+2)dydx=(e+1)3vu+uvv2vu=(x+2)sin2(3x+2)0.5(x+1)0.5vu=0.5(x+2)sin2(3x+2)(x+1)0.5uv=(x+1)0.5sin2(3x+2)+6sin(3x+2)cos(3x+2)uv=(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5

 

vu=0.5(x+2)sin2(3x+2)(x+1)0.5uv=(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5vu+uv=0.5(x+2)sin2(3x+2)+(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5

 

vu+uvv2=[0.5(x+2)sin2(3x+2)]+[(x+1)sin2(3x+2)]+[6sin(3x+2)cos(3x+2)(x+1)0.5](x+2)2sin4(3x+2)(x+1)0.5vu+uvv2=[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5

 

dydx=(e+1)3×[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5

 

 

There is probably only about 1000 mistakes in there.

Let's see what Heureka found   ( I saw Heureka's pop-up)

Melody Jan 13, 2015
 #5
avatar+62 
+5

Melody,You are too complicated...

lny=ln(e+1)3+\(12(x+1)ln(x+2)2ln(sin(3x+2))\(yy=0+\(12(x+1)\(1x+2\(2cos(3x+2)3sin(3x+2)y=y[\(12(x+1)\(1x+2\(6cos(3x+2)sin(3x+2)]y=\((e+1)3x+1(x+2)sin2(3x+2)[\(12(x+1)\(1x+26cot(3x+2)]

 Jan 13, 2015
 #6
avatar+118696 
0

Thanks YehChi, I shall have to look at it when I am fresher.    

I just made it an entire fraction. 

 Jan 13, 2015

3 Online Users

avatar
avatar