I am going to use quotient rule.
u=(x+1)0.5u′=0.5∗(x+1)−0.5v=(x+2)[sin(3x+2)]2v′=1∗[sin(3x+2)]2+2(sin(3x+2))∗cos(3x+2)∗3v′=sin2(3x+2)+6sin(3x+2)cos(3x+2)dydx=(e+1)3vu′+uv′v2vu′=(x+2)sin2(3x+2)∗0.5∗(x+1)−0.5vu′=0.5(x+2)sin2(3x+2)(x+1)0.5uv′=(x+1)0.5∗sin2(3x+2)+6sin(3x+2)cos(3x+2)uv′=(x+1)∗sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5
vu′=0.5(x+2)sin2(3x+2)(x+1)0.5uv′=(x+1)∗sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5vu′+uv′=0.5(x+2)sin2(3x+2)+(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5
vu′+uv′v2=[0.5(x+2)sin2(3x+2)]+[(x+1)sin2(3x+2)]+[6sin(3x+2)cos(3x+2)(x+1)0.5](x+2)2sin4(3x+2)(x+1)0.5vu′+uv′v2=[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5
dydx=(e+1)3×[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5
There is probably only about 1000 mistakes in there.
Let's see what Heureka found ( I saw Heureka's pop-up)
f(x)=(e+1)3√x+1(x+2)sin2(3x+2) \samll f′(x)=? $$ f(x)=(e+1)3√x+1(x+2)sin2(3x+2)=(e+1)3(√x+1∗1x+2∗1sin(3x+2)∗1sin(3x+2)) $$ f′(x)=(e+1)3√x+1(x+2)sin2(3x+2)((√x+1)′√x+1−(x+2)′x+2−(sin(3x+2))′sin(3x+2)−(sin(3x+2))′sin(3x+2)) $$ f′(x)=(e+1)3√x+1(x+2)sin2(3x+2)(12√x+1√x+1−1x+2−3cos(3x+2)sin(3x+2)−3cos(3x+2)sin(3x+2)) $$ f′(x)=(e+1)3√x+1(x+2)sin2(3x+2)(12√x+1√x+1−1x+2−2∗3cos(3x+2)sin(3x+2)) $$ f′(x)=(e+1)3√x+1(x+2)sin2(3x+2)(12(x+1)−1x+2−6cos(3x+2)sin(3x+2)) $$ P.S. (uv)′=uv(u′u+v′v) and (uv)′=uv(u′u−v′v) and (uv∗w)′=uv∗w(u′u−v′v−w′w) and (uv∗w∗w)′=uv∗w∗w(u′u−v′v−w′w−w′w)
I am going to use quotient rule.
u=(x+1)0.5u′=0.5∗(x+1)−0.5v=(x+2)[sin(3x+2)]2v′=1∗[sin(3x+2)]2+2(sin(3x+2))∗cos(3x+2)∗3v′=sin2(3x+2)+6sin(3x+2)cos(3x+2)dydx=(e+1)3vu′+uv′v2vu′=(x+2)sin2(3x+2)∗0.5∗(x+1)−0.5vu′=0.5(x+2)sin2(3x+2)(x+1)0.5uv′=(x+1)0.5∗sin2(3x+2)+6sin(3x+2)cos(3x+2)uv′=(x+1)∗sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5
vu′=0.5(x+2)sin2(3x+2)(x+1)0.5uv′=(x+1)∗sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5vu′+uv′=0.5(x+2)sin2(3x+2)+(x+1)sin2(3x+2)+6sin(3x+2)cos(3x+2)(x+1)0.5(x+1)0.5
vu′+uv′v2=[0.5(x+2)sin2(3x+2)]+[(x+1)sin2(3x+2)]+[6sin(3x+2)cos(3x+2)(x+1)0.5](x+2)2sin4(3x+2)(x+1)0.5vu′+uv′v2=[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5
dydx=(e+1)3×[0.5(x+2)sin(3x+2)]+[(x+1)sin(3x+2)]+[6cos(3x+2)(x+1)0.5](x+2)2sin3(3x+2)(x+1)0.5
There is probably only about 1000 mistakes in there.
Let's see what Heureka found ( I saw Heureka's pop-up)