Processing math: 100%
 
+0  
 
0
650
1
avatar+22 

The difference of the roots of the quadratic equation x2+bx+c=0 is|b2c| . If c0, then find c in terms of b.

 Sep 6, 2020
 #1
avatar+9488 
0

The roots of the quadratic equation    x2+bx+c=0    are:

 

x=b+b24c2          and          x=bb24c2

 

The difference between these two roots is:

 

b + b24c2b  b24c2 =b + b24c2+b + b24c2 =b + b24c + b + b24c2 =b24c + b24c2 =2b24c2 =b24c

 

which we are told must be equal to  |b2c| ...so we can make this equation:

 

b24c = |b2c|                    Now let's solve this equation for  c

 

(b24c )2 = ( |b2c| )2

 

Squaring a negative number gives the same result as squaring the positive version of that number,

so we can drop the absolute value signs

 

b24c = (b2c)2 b24c = (b2c)(b2c) b24c = b24bc+4c2

                                                       Subtract  b2  from both sides of the equation

4c = 4bc+4c2

                                                       Add  4c  to both sides of the equation

0= 4bc+4c2+4c

                                                       Rearrange the terms

0= 4c24bc+4c

                                             Divide through by  4

0= c2bc+c

                                             Factor  c  out of all three terms on the right sidde

0= c(cb+1)

                                             Set each factor equal to zero and solve for  c

 

c=0orcb+1=0cb=1c=b1

 

Check: https://www.wolframalpha.com/input/. . .

 

So either  c = 0  or  c = b - 1

 

We are given that  c ≠ 0,

 

So it must be that  c = b - 1

 Sep 6, 2020

2 Online Users