Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
2
1590
12
avatar

Can anyone prove that i^i is a real number using only advanced algebra and trig? I will post my solution in 24 hours if no one finds it- note that there may be multiple proofs. Good Luck!

math complex-numbers
 Aug 22, 2014

Best Answer 

 #5
avatar+118703 
+18

eix=cosx+isinxeiπ2=cosπ2+isinπ2eiπ2=0+i×1eiπ2=iraise each side to the power of i(eiπ2)i=iiei2π2=iie(1)π2=iieπ2=iithereforeii=eπ2thereforeii is a real number 

.
 Aug 23, 2014
 #1
avatar
+8

Just an update: to clarify the above, this means NO CALCULUS!!

 Once again, good luck!

 Aug 22, 2014
 #2
avatar
+8

Other update:

a.1=i, and also, i×i=1

b. by i^i I mean ii

 

We're now at the one-hour mark. Good luck!

 Aug 22, 2014
 #3
avatar
0

We're now at 4 hours and no one has solved it yet! Here's a hint- use logs.

Good Luck!

 Aug 23, 2014
 #4
avatar+4473 
+10

The following video lists the claim and proves it beautifully (literally!): https://www.youtube.com/watch?v=PxViWDgAZ7Q

 Aug 23, 2014
 #5
avatar+118703 
+18
Best Answer

eix=cosx+isinxeiπ2=cosπ2+isinπ2eiπ2=0+i×1eiπ2=iraise each side to the power of i(eiπ2)i=iiei2π2=iie(1)π2=iieπ2=iithereforeii=eπ2thereforeii is a real number 

Melody Aug 23, 2014
 #6
avatar+118703 
+6

Mmm I just noticed that I did not use any logs 

 Aug 23, 2014
 #7
avatar
0

Great job Melody my proof is probably a bit less elegant and is also longer. You got the right answer though.

 Aug 23, 2014
 #8
avatar
+5

OK! Here is my proof!

Lemma: e(π×i)=1

Statement                                          Reason

1.e(π×i)=x                                   Given

2.e(k×i)=cos360(k)+i×sin360(k)              Euler's Identity

3.e(π×i)=cos360(π)+i×sin360(π)            From 1. and 2.

4.e(π×i)=1+i×0                 Simplify

5.e(π×i)=1                                Simplify

Q.E.D.

Main Proof:

Statement                                                   Reason

1.ii=x                                                    Given

2. ln(ii)=ln(x)                                    Take log of both sides

3.i×ln(i)=ln(x)                                 Power rule of logarithms

4. i=1                                             Given

5.i=(1)(12)                                         Algebra

6.i×ln((1)(12))=ln(x)                      From 5. and 3.

7. i×(12)×ln(1)=ln(x)                Power rule of logarithms

8. ln(x)=y if and only if ey=x              Definition of ln

9.i×(12)×(π×i)=ln(x)                 Use the lemma

10. ((π×i×i)2)=ln(x)                            Algebra

11. (((1)×π)2)=ln(x)                           Algebra

12. (π2)=ln(x)                                      Algebra

13. e(π2)=x                                          Take antilog of both sides and use step 8.

14.1(e(π2))=x                                          Algebra

15. 1(eπ)=x                                            Algebra

16. (1(eπ))×(e(4π)e(4π))=x              Rationalize the denominator

17. (e(4π))(e4)                                             Algebra

18. e(4π)e2=0.2078795763507619   Algebra

And this is a real number.

Q.E.D.

Thanks to you all for submitting your proofs and also, please respond to tell me of any flaws in my proof. I will try to get back to WebCalc 2.0 with another puzzle proof question soon!

 Aug 24, 2014
 #9
avatar+118703 
+5

 

hi anonymous,

Why don't you join up.  It is very easy to do.  Much easier than posting anonymously every time.  

I liked you proof.  I just wrote it in LaTex as I worked through it.  

 

eπi=cosπ+isinπeπi=1+0eπi=1ln(eπi)=ln(1)ln(1)=πinowx=iilnx=lniilnx=ilnilnx=iln(1)1/2lnx=i2ln(1)lnx=i2×πilnx=π×i22lnx=π×12lnx=π2elnx=eπ2x=eπ2xZthereforeiiZ

 Aug 24, 2014
 #10
avatar+130466 
0

Very impressive, guys....!!!!

 

 Aug 24, 2014
 #11
avatar
0

Melody

yes but I am just a 12 yr old and so my parents won't allow me to sign up.

the proof was written by me, a 12 year old.

 Aug 25, 2014
 #12
avatar+9675 
0

Good job anonymous 12-year-old. Me, a 13-year-old, couldn't have thought of that complex proof :O

MaxWong  Aug 17, 2016

4 Online Users