Processing math: 100%
 
+0  
 
0
432
4
avatar+876 

A function f(n) is defined as the product of its positive digits. For example, f(20)=2,f(12)=2,f(67)=42 

We let N=99i=1f(i). Find f(N)

 Dec 23, 2021
 #1
avatar
0

N = 2158.

 Dec 23, 2021
 #3
avatar+2407 
0

Oh no, it seems like we got different answers. 

Do you mind explaining what you did?

 

Thanks

=^._.^=

catmg  Dec 23, 2021
 #2
avatar+2407 
0

Hi :))

 

I'm going to group the numbers to make them easy to calulate. 

i = 10, 20, 30, ..., 90. 1 + 2 + 3 + ... + 9

1 <= i <= 9. 1 + 2 + 3 + ... + 9 

11 <= i <= 19. 1 + 2 + 3 + ... + 9 

21 <= i <= 29. 2(1 + 2 + 3 + ... + 9)

31 <= i <= 39. 3(1 + 2 + 3 + ... + 9)

...

91 <= i <= 99. 9(1 + 2 + 3 + ... + 9)

 

Overall. there are 1 + 1 + 1 + 2 + 3 + ... + 9 = 2 + 10*9/2 = 47 groups of (1 + 2 + 3 + ... + 9)

47*(1 + 2 + 3 + ... + 9) = 47*45 = 2115.

 

I hope this helped. :))

=^._.^=

 Dec 23, 2021
 #4
avatar+876 
0

This is correct. Nice job!

 

Perhaps, you notice in your answer that 2115=4621? This is no coincidence.

 

Instead of letting f(0)=0, we let f(0)=1

And it follows that 99i=0f(i)=(1+1+2+3++9)2=462

Subtracting f(0), we have 

462f(0)=4621=21161=2115

MathProblemSolver101  Dec 23, 2021
edited by MathProblemSolver101  Dec 23, 2021

2 Online Users

avatar