Hello Max!
Find dydx when y=xy+yx
lny=y×lnx+x×lny
lny−x×lny=y×lnx
lny×(1−x)=y×lnx
ylny=(1−x)lnx
y=lnylnx×(1−x)
From here I have to capitulate.
To differentiate, I need
y isolated on one side of the equation.
I'm excited about the solution!
Greetings asinus :- ) !