I. f(x)=arctan(8x);f′(x)=?
\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ] = 8x \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ) )\times\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\left[ 1+(8x)^2} \right]\times\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = \frac{8} {1+(8x)^2} } }
II. f(x)=sin(x)cos(x);f′(x)=?
y=sin(x)cos(x)|ln()ln(y)=cos(x)∗ln(sin(x))| d()dxy′y=[cos(x)]′∗ln(sin(x))+cos(x)∗[ln(sin(x))]′y′=y([cos(x)]′∗ln(sin(x))+cos(x)∗[ln(sin(x))]′)y′=sin(x)cos(x)(−sin(x)∗ln(sin(x))+cos(x)∗cos(x)sin(x))y′=sin(x)cos(x)(−sin(x)∗ln(sin(x))+cos2(x)sin(x))
You are probably encouraged to do this via formula but I can never remember the formula so I will show you the long way.
Besides I never do anything the short way - ask anyone LOL
y=atan(8x)8x=tanyx=tany8dxdy=sec2y8dxdy=18cos2ydydx=8cos2y
At this point I used this triangle
dydx=8[cosy]2dydx=8[1√1+64x2]2dydx=81+64x2
I. f(x)=arctan(8x);f′(x)=?
\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ] = 8x \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ) )\times\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\left[ 1+(8x)^2} \right]\times\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = \frac{8} {1+(8x)^2} } }
II. f(x)=sin(x)cos(x);f′(x)=?
y=sin(x)cos(x)|ln()ln(y)=cos(x)∗ln(sin(x))| d()dxy′y=[cos(x)]′∗ln(sin(x))+cos(x)∗[ln(sin(x))]′y′=y([cos(x)]′∗ln(sin(x))+cos(x)∗[ln(sin(x))]′)y′=sin(x)cos(x)(−sin(x)∗ln(sin(x))+cos(x)∗cos(x)sin(x))y′=sin(x)cos(x)(−sin(x)∗ln(sin(x))+cos2(x)sin(x))