Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1008
3
avatar+62 

f(x)=arctan(8x);f(x)=?

f(x)=sin(x)cos(x);f(x)=?

 Jan 13, 2015

Best Answer 

 #2
avatar+26396 
+10

I. f(x)=arctan(8x);f(x)=?

\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ] = 8x \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ) )\times\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\left[ 1+(8x)^2} \right]\times\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = \frac{8} {1+(8x)^2} } }

II. f(x)=sin(x)cos(x);f(x)=?

y=sin(x)cos(x)|ln()ln(y)=cos(x)ln(sin(x))| d()dxyy=[cos(x)]ln(sin(x))+cos(x)[ln(sin(x))]y=y([cos(x)]ln(sin(x))+cos(x)[ln(sin(x))])y=sin(x)cos(x)(sin(x)ln(sin(x))+cos(x)cos(x)sin(x))y=sin(x)cos(x)(sin(x)ln(sin(x))+cos2(x)sin(x))

 Jan 13, 2015
 #1
avatar+118696 
+5

You are probably encouraged to do this via formula but I can never remember the formula so I will show you the long way.

 

Besides I never do anything the short way - ask anyone       LOL

 

y=atan(8x)8x=tanyx=tany8dxdy=sec2y8dxdy=18cos2ydydx=8cos2y

 

At this point I used this triangle

 

 

dydx=8[cosy]2dydx=8[11+64x2]2dydx=81+64x2

 Jan 13, 2015
 #2
avatar+26396 
+10
Best Answer

I. f(x)=arctan(8x);f(x)=?

\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ] = 8x \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ ) )\times\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\left[ 1+(8x)^2} \right]\times\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = 8 \\\\\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(8x)} \ \right]' = \frac{8} {1+(8x)^2} } }

II. f(x)=sin(x)cos(x);f(x)=?

y=sin(x)cos(x)|ln()ln(y)=cos(x)ln(sin(x))| d()dxyy=[cos(x)]ln(sin(x))+cos(x)[ln(sin(x))]y=y([cos(x)]ln(sin(x))+cos(x)[ln(sin(x))])y=sin(x)cos(x)(sin(x)ln(sin(x))+cos(x)cos(x)sin(x))y=sin(x)cos(x)(sin(x)ln(sin(x))+cos2(x)sin(x))

heureka Jan 13, 2015
 #3
avatar+118696 
0

Thanks Heureka,  I didn't know where to start with that second one.

I think you have done the first one different from me too - I shall have to take a look :)

 Jan 13, 2015

3 Online Users

avatar