1) \(sinθ=\frac{1}{6}\)
and \(tanθ=\frac{sinθ}{cosθ}\) <=> \(cosθ=\frac{sinθ}{tanθ}=\frac{\frac{1}{6}}{\frac{-\sqrt{35}}{35}}=\frac{-\sqrt{35}}{6 }\)
so \(cosθ= \frac{-\sqrt{35}}{6}\)
2) \(cosθ=cos(-θ)=\frac{\sqrt{3}}{4}\)
and \(cos^2θ + sin^2θ =1 \)
so \(sinθ =\sqrt{1-cos^2θ} = \sqrt{\frac{16}{16}-\frac{3}{16}}=\sqrt{\frac{13}{16}}=\frac{\sqrt{13}}{-4}\)
so \(sinθ=-\frac{\sqrt{13}}{4}\)
Hope this helps!