heureka

avatar
यूजर का नामheureka
स्कोर26367
Membership
Stats
सवाल 17
जवाब 5678

 #3
avatar+26367 
+9

Welche der folgenden Grenzwerte existieren ?
Bestimmen sie gegebenfalls den Grenzwert mit der Regel von Bernoulli / de l'Hospital

 

c.)
\(\displaystyle \lim \limits_{x\to 0} \dfrac{\ln\Big(\cos(x) \Big)} {\ln\Big(\cos(3x)\Big)}\)

 

Bernoulli / de l'Hospital:

\(\begin{array}{|rcl|} \hline && \mathbf{\lim \limits_{x\to 0} \dfrac{\ln\Big(\cos(x) \Big)} {\ln\Big(\cos(3x)\Big) } } \quad | \quad \text{Bernoulli / de l'Hospital } \\\\ &=& \lim \limits_{x\to 0} \dfrac{\dfrac{-\sin(x)}{\cos(x)}} {\dfrac{-3\sin(3x)}{\cos(3x)} } \\\\ &=& \lim \limits_{x\to 0} \dfrac{1}{3}\cdot \dfrac{\sin(x)\cos(3x)} {\cos(x)\sin(3x)} \\\\ && \begin{array}{|rcl|} \hline \sin(x)\cos(3x) &=& \dfrac12\cdot \Big( \sin(x-3x)+ \sin(x+3x) \Big) \\ &=& \dfrac12\cdot \Big( \sin(-2x)+ \sin(4x) \Big) \\ &=& \dfrac12\cdot \Big( \sin(4x)-\sin(2x) \Big) \\ &=& \dfrac12\cdot \Big( 2\sin(2x)\cos(2x)-\sin(2x) \Big) \\ &=& \dfrac12\cdot\sin(2x) \Big( 2\cos(2x)-1 \Big) \\ \hline \end{array}\\ && \begin{array}{|rcl|} \hline \sin(3x)\cos(x) &=& \dfrac12\cdot \Big( \sin(3x-x)+ \sin(3x+x) \Big) \\ &=& \dfrac12\cdot \Big( \sin(2x)+ \sin(4x) \Big) \\ &=& \dfrac12\cdot \Big( \sin(4x)+\sin(2x) \Big) \\ &=& \dfrac12\cdot\sin(2x) \Big( 2\cos(2x)+1 \Big) \\ \hline \end{array}\\\\ &=& \lim \limits_{x\to 0} \dfrac{1}{3}\cdot \dfrac{\dfrac12\cdot\sin(2x) \Big( 2\cos(2x)-1 \Big)} {\dfrac12\cdot\sin(2x) \Big( 2\cos(2x)+1 \Big)} \\\\ &=& \lim \limits_{x\to 0} \dfrac{1}{3}\cdot \dfrac{\Big( 2\cos(2x)-1 \Big)} {\Big( 2\cos(2x)+1 \Big)} \\\\ &=& \dfrac{1}{3}\cdot \dfrac{\Big( 2\cos(0)-1 \Big)} {\Big( 2\cos(0)+1 \Big)} \quad | \quad \cos(0)=1 \\\\ &=& \dfrac{1}{3}\cdot \dfrac{\Big( 2\cdot 1-1 \Big)} {\Big( 2\cdot 1+1 \Big)} \\\\ &=& \dfrac{1}{3}\cdot \dfrac{ 1 } { 3 } \\\\ &\mathbf{=}& \mathbf{ \dfrac{1}{9} } \\ \hline \end{array}\)

 

laugh

18 Des 2018
 #1
 #6
avatar+26367 
+9

the positive integers are arranged in the pattern illustrated below if this pattern continues indefinitely, what is the number immediately above 39863?

1  2 5 10 17 26

3  4 7 12 19 28

6  8 9 14 21 30

11 13 15 16 23 32

18 20 22 24 25 34

27 29 31 33 35 36

 

Source: https://www.algebra.com/algebra/homework/word/misc/Miscellaneous_Word_Problems.faq.question.1131667.html

 

Let row = n

Let column = k

 

Formula:

\(\begin{array}{|rcll|} \hline T(n,k) &=& (k-1)^2+2n-1 \qquad & n\le k \\ T(n,k)&=&(n-1)^2+2k \qquad & n>k \\ \hline \end{array}\)

Source: http://oeis.org/search?q=a185725&sort=&language=english

 

1. \(\begin{array}{|rcll|} \hline \sqrt{39863} &=& 199.657\ldots \\ n_{min} &=& 199 \\ n_{max} &=& 200 \\ \hline \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline T(200,k) &=& (200-1)^2+2k \qquad & n>k \\ 39863 &=& 199^2+2k \\ 2k &=& 39863 - 199^2 \\ 2k &=& 262 \\ \mathbf{k}& \mathbf{=}& \mathbf{131} \\ \hline \end{array} \)

 

The number immediately above:

\(\begin{array}{|rcll|} \hline T(199,131) &=& (199-1)^2+2\cdot 131 \qquad & n>k \\ T(199,131) &=& 198^2+2\cdot 131 \\ \mathbf{T(199,131)} & \mathbf{=}& \mathbf{39466} \\ \hline \end{array}\)

 

laugh

17 Des 2018