So a^3 + b^3 = (a + b)(a^2 - ab + b^2).
Substituting in, we have 812 = 14(a^2 - ab + b^2).
Simplifying we have 58 = a^2 - ab + b^2.
a^2 - ab + b^2 = (a + b)(a + b) - 3ab.
Substituting in, we have 58 = (14)(14) - 3ab.
Now we have ab = 46.
Then we also have a^2 - ab + b^2 = (a - b)(a - b) + ab.
Thus, 58 = (a - b)^2 + 46.
(a - b)^2 = 12.
\(a - b = \pm{2\sqrt{3}}\)
Now we can sove for a. If we add the two equations together, we get 2a = 14 + 2sqrt(3)
Thus, \(a = 7 + \sqrt{3}\), and \(a = 7 - \sqrt{3}\).
Substituting in, we have \(b = 7 - \sqrt{3}\), and \(b = 7 - 3\sqrt{3}\).
Thus, our possible for solutions \((a, b)\)are:
\((7 + \sqrt{3}, 7 - \sqrt{3})\)
\((7 - \sqrt{3}, 7 - 3\sqrt{3})\)