Alan, thank you for pointing out the conventional way. I knew him, but I have learned with the help of some participants and radix, how to bring the graph in the Forum. I took the opportunity. It was fun! You, Alan, thank you again!
Greeting asinus :- ) !
Hello ballhopper!
{ y^2 + x^2 = 10
y+x = 4
y2+x2=10
y+x=4
y=4−x
(4−x)2+x2=10
16−8x+x²+x²=10
8−4x+x²=5
x²−4x+3=0
ax²+bx+c=0
a=1; b=−4; c=3
x=−b±√b2−4ac2a
x=4±√16−122
x1=4+√16−122=3
x2=4−√16−122=1
solution set={3;1}
Give the coordinates of the circles center and its radius
(x-7)^2 + (y+4)^2 = 16
y=√16−(x−7)2−4
coordinates of the circles: 7 / - 4
r = 4
find x if h(x) =10
x can take any real number value.
Hello Konzetsu!
I mistakenly entered at the end of x instead of p. Please indulgence! Sorry!
16 - 3p = 2/3p + 5
16−3p=2/3p+5
11=3p+2/3p
11=9 p2+23p
33p=9p2+2
9p2−33p+2=0
a=9;b=−33;c=2
p=−b±√b2−4ac2a
p=33±√332−4∗9∗22∗9
p1=33+√101718=3.605
p2=33−√101718=0.06164
x=33±√332−4∗9∗22∗9
x1=33+√101718=3.605
x2=33−√101718=0.06164
Guten Morgen lieber Gast!
Was soll überschlagen werden?
Bitte gib uns schnell einen Tip, worum es in deinem Test geht.
Dann kann dir sicher geholfen werden.
Gruß
asinus :- )
!
-[6x-(4x+8)]=9+(6x+3)
−[6x−(4x+8)]=9+(6x+3)
−[6x−4x−8]=9+6x+3
−6x+4x+8=9+6x+3
−8x=4