f(x)= 3cos(3x) Durch eine Verschiebung des Kosinus-Graphen erhält man den Sinus-Graphen. Man kann also f auch als Sinus-Funktion darstellen. Wie sieht die Funktion f in der Darstellung mit Sinus aus?
f(x)=?
\(f(x)=3cos(3x)\)
\(g(x)=3sin(3x)\)
g(x) ist um \({\color{blue}\frac{5\pi}{6}}\) nach plus x verschoben.
\({\color{blue}f(x)=3cos(3x)=3sin(3\times(x+\frac{5\pi}{6}))}\)
Gruß asinus :- ) !
8' 7 1/4" divided by 16
\(8'\ 7\frac{1}{4}'':16\)
\(\large{\frac{8'\times\frac{12''}{1'}+\frac{29''}{4}}{16}=\frac{\frac{96''\times4+29''}{4}}{16}=\frac{103\frac{1}{4}''}{16}}\)
\(=\frac{103}{16}''+\frac{1}{64}''=6\frac{28}{64}''+\frac{1}{64}''\)
\({\color{blue}=6\frac{29}{64}''}\) !
\(\)
whats -8 divided by -4x
\({\color{red}\frac{-8}{-4y}}{\color{blue}\ =\ \frac{2}{y}}\) !
2x+3y=10
\(y=-\frac{2}{3}x+\frac{10}{3}\)
p q
\(if \ \ y\ =\ 0 \ then\)
\(-\frac{2}{3}x+\frac{10}{3}=0\)
\({\color{blue}x = 5}\) !
Greeting asinus :- = !
what is 17.5% of £3.20
\({\color{red}£3.20 \times17.5\%}= \frac{£3.20\times 17.5}{100}={\color{blue}£0.56}\)
!
what is 4- 4/3* 5/4+ 11/6
\(4-\frac{4\times5}{3\times4}+\frac{11}{6}\)
\(=\frac{48-20+22}{12}\)
\(=\frac{50}{12}{\color{blue}\ = 4\frac{1}{6}}\) !
How to calculate the sin of 73°18'42''...?
\(73°18'42''= 73° + 18'\times \frac{1°}{60'}+42'' \times\frac{1°}{3600''}\)
\(=73.3116\overline{6}°\)
\(sin 73°18'42'' = sin 73.3116\overline{6}°\)
\({\color{blue}=0.957880987839}\)
8-1+3x2+6
\({\color{red}8-1+3\times2+6}{\color{blue}\ =19}\) !
Find angle X, in the second quadrant whose tangent is -5
\(x = arctan (-5)\)
\({\color{blue}x=101.3099°}\) !
Enter (-5)
Enter " sec atan = " ⇒ -78.6901° (fourth quadrant)
Enter " +180 = " ⇒ 101.3099° (second quadrant)
How find 1.0554 to the nearest tenth
\({\color{blue}1.0554 \ to \ one \ tenth \ is \ 1.1}\) !