the length of the shortest path
Hello BuilderBoy!
y=2x−4P1(0,0)P(x,2x−4)P2(0,1)
L21,P=x2+y2=x2+(2x−4)2L2P,2=x2+(1−y)2=x2+(1−2x+4)2L21,P+L2P,2=x2+(2x−4)2+x2+(5−2x)2
d(L21,P+L2P,2)dx=2x+2(2x−4)⋅2+2x+2(5−2x)⋅(−2)=04x+8x−16−20+8x=020x=36xP=1.8yp=−0.4P(1.8,−0.4)
You can calculate the distances between the points. The two-point equation is called:
L=√(y2−y1)2+(x2−x1)2
Have fun.